DevOps-Driven Development

It is now time to add the concept of “DevOps-Driven Development” to our repertoire.

“Test-driven” development, which originated around the same time as Extreme Programming and Agile Development, encourages us to think about testing as we architect our software and plan our tasks. Similarly, a “DevOps-Driven Development” approach, ensures that we consider operational implementation as well as deployment process during the design phase. To be clear, DevOps thinking needs to augment (and not replace) testing strategy.

Definition and Motivation

First a definition: I am using the word DevOps here as a shortcut to include both DevOps (build and deployment tools) and Ops (IT/data center Operations).

How many times have you heard “ … but it works on my machine!!” from a developer whose code was found to have a bug in the QA environment or, worse, in production? We all agree that these situations are a horrible waste of time for all involved, most of all customers. This post  thus advocates that DevOps-thinking, just as quality-thinking, must occur at the design phase and continue throughout the development of the software until the software is released to production, and even after it has been released in production.

Practicing DevOps-Driven Development

I have always advocated: “If you don’t know how to test it, you don’t know how to design it.” (Who Owns Quality? Part 3), to articulate the fact that “quality cannot be debugged out, it has to be designed in”. Similarly, if we want to know – before our customers call us – when our code crashes in Production, or becomes unusably slow, then we must build into our code the proper instrumentation and administration capabilities.

We now must add this mantra “If you don’t know how to deploy it and manage it in Production, you don’t know how to design it”.

Just like we don’t allow code to be merged into Trunk (main branch) without complete unit tests, code cannot be merged into Trunk without correct deployment scripts, release notes, and production instrumentation.

Here is a “thinking DevOps” check list:


First of all, we must ensure that the code deploys successfully not only in Production but in all environments: Dev, QA, Stage, etc

This implies:

  • Developers write/update release notes: e.g. highlighting any changes required in the configuration of the environments: open new port, add a column in database, a new property in config files, etc
  • Developers in collaboration with DevOps team update deployment scripts, e.g. to account for a new executable, or schema changes in the database

The management of Config/Property files is beyond the scope of this blog, but I strongly recommend the “Infrastructure as code” approach: i.e. fully automating  server/image configuration for deployment and, managing configuration, deployment scripts and application property files under source code control.


If we want to detect problems before our (irate) customers call us, our code needs to be monitor-able – not only at the physical server level, but also each virtual machine, service and process, as well as networking and storage systems.

Monitor-ability needs surpass keeping track of CPU load, disk space and network bandwidth. We, developers, (should) know what parameter(s) indicate when our system is mis-behaving, whether it is a queue exceeding a given size, or certain operations timing out. As a consequence, we must publish these parameters to interfaces compatible with Ops monitoring tools, of which there are several categories:

Furthermore, by making performance metrics easily observable, we ensure that each new release maintains (or improves) the performance of the prior release.


Despite our best intentions, we must humbly assume that at some point our code will crash, or seriously mis-behave, and thus require troubleshooting. In the worst case, Development will be called in (usually in the wee hours of the night) to assist the Ops team. As any one who has had to figure out why a given system intermittently crashes will attest, having log files capture meaningful information prior to the incident is invaluable. Having to add logging statements after-the-fact is a painful process. Consequently, a solid Logging Hygiene is critical (and worthy of a dedicated post):

  • Log statements must be written in a format compatible with the log management system (Splunk, GrayLog2, …)
  • All log statements used during the coding and QA phase must be removed
  • Comprehensive Operations-focused logging must be added to document all operations that may fail due to environmental and data-related problems: out-of-memory, disk full, time out, user not found, access denied, etc. These are not bugs, but failures due to either environment (e.g. a server or connection is down) or incorrect data (e.g. the user has been deleted).
  • The hierarchy of logging levels must be enforced so that in normal operations log files are kept small, and conversely  meaningful information is output when troubleshooting is required
  • Log statements must include all the information necessary to bind all operations across various services that are related to a single user-level transaction (e.g. clicking on a link to a new page, adding an item to cart) – more details below in “Tunable”.


This again is worthy of its own post, but code that is deployed to Production must both support the security practices implemented by the Ops team (e.g. Authentication protocols, networking infrastructure), and ensure that the code itself is secure (e.g. no SQL injection, buffer overflow, etc).

Business Continuity

Business continuity is often overlooked, but we must ensure that any persistent data is stored in a storage system that is backed up by the Ops team. In other words, if we add a new database, we’d better ask the Ops team to add it to their backup scripts.

Similarly, if our infrastructure is deployed (or even just deployable) across multiple data-centers, our code must support this though configuration.

The above requirements represent the basic DevOps requirements that any developer must address before even thinking that his/her code is ready to release. The following details additional practices that are highly recommended, but not strictly necessary.


The code must be designed so that the Ops team can scale it in the datacenter without needing help from Development.

This may involve deploying the code to a bigger server. This implies that the code can be configured (and documented for the Ops team) to make use of the expanded resources, whether it is number of cores, RAM, threads, I/O, etc

This may also involve adding instances to a cluster. Consequently, the code must be discoverable (the load balancer must find out that a new instance has been added/subtracted), as well as cluster-aware (e.g. stateless).


Because it is so hard to simulate all real-life user activities and behaviors in non-production environments, we must provide tools to the Ops team to tune the performance of our code through configuration rather than code deployment (e.g. size of JVM, number of threads, queue sizes, hash table size, etc).

We must thus provide the metrics to observe performance. Let’s take the example of response time: depending on the complexity of the application a user request may be handled by tens, or even hundreds of services. In order to allow the Ops team to build a timeline of the interactions between all the services involved, each log entry must carry at least one tag that identifies the root transaction that generated the request. Otherwise it is impossible to determine whether the performance degradation comes from a given service, or a unique server, or even from the network infrastructure.

The same tagging will be used to troubleshoot failures (e.g. to discover why a given service fails intermittently).


As I mentioned in an earlier blog, QA does not stop in QA: we have to anticipate “unknown unknowns”, i.e. usage (or performance) scenarios that we have not modeled in our QA environments. By definition, there is not much we can do other than ensuring that our code is easy to trouble-shoot (see above) and that logs and associated data can be made available easily and rapidly to developers and QA team (e.g. by giving them access to the log management console).

Sometimes this requirement is more complex than it sounds, e.g. when user data must be deleted or obfuscated for privacy or security reasons. Again, this should be thought through before code is deployed.

Analytics – Growth Hacking – Usability

This last requirement stems from Marketing and Sales rather than Operations, but it is equally important since it drives revenue growth.

In most companies, marketing and sales rely on usage reports to drive new marketing campaigns, pricing, product offerings and even new features. As a consequence, any new feature must integrate with the Analytics infrastructure whether via integration with usage tracking applications (e.g. Mixpanel, Flurry, …) or simply log management consoles (Splunk, GrayLog2, …). However, I highly recommend using separate logging infrastructure for operations monitoring and for usage analytics, if only because usage analytics requires additional data that is not useful for Operations monitoring (e.g. the time a user spends on a page is extremely valuable for usage analytics but irrelevant for Operations)

Even More So for Microservices

As we migrate towards a microservices architecture, early “DevOps thinking” becomes even more critical. As the “Microservices: Four Essential Checklists when Getting Started” advises: “Microservices introduces a lot of moving parts that were previously non-existent in a monolithic system”.

What was a monolithic application running in a single virtual machine can morph into 5, 10 or even 20 microservices. Consequently, Development, DevOps and Ops must collaborate on microservices infrastructure tools: service registration, scaling up/down each service independently, health monitoring, error detection, etc. to provide visibility on the status of these 20 microservices as a whole. This challenge has even prompted dedicated product categories (SignalFx,  Nirmata, etc)


Only with a holistic approach to product architecture can we ensure customer satisfaction with software that works the first time, and all the time. Deployment and operations management concerns, just like testability, must be addressed at design time, so that these capabilities are meshed natively into the code rather than “bolted on” after the fact. Failing to do so will likely impact the delivery schedule, or worse, create outages in production.

More importantly, there is so much we can learn from observing how our code behaves in Production: operational efficiency, stability, performance, usability, that we would do a disservice to ourselves if we did not avail ourselves of this valuable information to drive further improvements to our product.

Day-by-Day Model of an Iteration

This post presents a practical guide of what happens during a typical Agile iteration – a sort of play-by-play for each role in the team, day by day.

This post presents a practical guide of what happens during a typical Agile iteration – a sort of play-by-play for each role in the team, day by day. Please open the attached spreadsheet which models the day-by-day activities of a 2-week Agile development iteration, and describes the main activities for each role during this 10-day cycle of work. In addition, we will highlight how to successfully string iterations together, without any dead time; as the success of any given iteration is driven by preparation that has to take place in earlier iterations.

This is intended as a guide, rather than a prescription. While each iteration will have its own pace – a successful release will follow a sequence not too different from the one presented here.

Golden Rules

Each company is different, each project is different, each team is different, each release is different, and each interpretation of Agile is different. The following states the immutable principles to which I personally adhere.

  • Once Engineering and Product Owner agree on the deliverables of an iteration, they are frozen for this iteration
    • Engineering must deliver on time
    • Features cannot be changed, added, or re-prioritized
    • Only exception is a “customer down” escalation of a day or more
  • Engineering delivers “almost shippable” quality code at the end of the iteration
  • Each release is self-contained: all the activities pertaining to a given user story must be completed within the iteration, or explicitly slated for another iteration at the start of the iteration
    • E.g.: QA, unit tests, code reviews, design documentation, update to build & deployment tools, etc
  • Dev & QA engineers scope their individual tasks at the beginning of each iteration. The scope and deliverables of the iteration are based on these estimates.
    • Engineers are accountable to meet their own estimates

The above implies that Engineers must plan realistically by
(a) accounting for all activities that will need to take place for this iteration, and
(b) accounting for typical levels of interruptions and activities not specifically related to the project (scheduled meetings, questions from support, beer bashes, vacations, etc).

Estimates must be made with the expectation that we are all accountable to meeting them. This sounds like a truism, except that it is rarely applied in practice.

Day by Day

Before the Start of an Iteration

Preparation and planning prior to an iteration are critical to its success. As the spreadsheet highlights, the Product Manager spends the majority of his/her time during a given iteration planning the next iteration, by

(a)  Prioritizing the tasks to be delivered in the next iteration
(b)  Documenting the user stories to the level of detail required by developers
(c)  Reviewing scope with Project Manager and Tech Lead

Pre-requisites at the Start of a Release

The following must be delivered to Engineering at the start of a release. The Product Owner, Project Lead and Tech lead are responsible for providing

  • “A” list of user stories to be implemented during the release
  • Detailed specs of the “A” list user stories
  • Design of the “A” list features sufficient to derive the coding  and QA tasks necessary to implement the features
  • Estimated scope for each feature – rolling up to a target completion date for the iteration

These estimates are “budgetary”. Final estimates are given by the individual engineers.

Day 1 – Kick-Off

The whole team gets together and kicks-off the iteration: the PM presents the “A” list features to Eng, and the Tech Lead presents the critical design elements. Tasks are assigned tentatively.

During the rest of the day, engineers review the specs of their individual tasks, with the assistance of PM and Tech Lead.  This results in tasks entered into Jira, with associated scope and individual plans for the iteration.

The Project Lead combines all tasks into a project plan (using artifacts of his/her choice) to ensure that the sum of all activities adds up to a timely delivery of the iteration. The Project Lead also identifies any critical dependency, internal and external, that may impact the project.

A delivery date is computed from the individual estimates, and the team (lead by Product Owner, assisted by Project Manager and Tech Lead) iterates to adjust tasks and date

Day 2 – Deliverables are Finalized

Day 1 activities continue if necessary – resulting into a committed list of deliverables and a committed delivery date

The team, lead by Project Manager, also agrees on how the various tasks will be sequenced to optimize use of resources, and to front-load deliverables to QA as much as possible.

Developers start coding, QA engineers start writing test cases and/or writing automation tests

Day 6  – V1 Spec of the Next Iteration

By Day 6, the Product Manager provides the V1 Spec of the next iteration.

V1 Spec is a complete spec of all the user stories that the Product Owner estimates can be delivered in the next iteration. Typically, V1 will contain more than can be delivered, in order to provide flexibility in case some user stories are more complex than originally thought to implement.

During the remainder of the release, the Tech Lead (primarily) will work with the Product Owner to flesh out the details of the next release, to design the key components of the next release to a degree sufficient to be able to (a) list out the tasks required to implement the user stories, (b) estimate their scope, and (c) ensure that enough details has been provided for developers and QA engineers.

During the discussions of the next release, the Project Lead will identify any additional resources that will need to be procured, whether human or physical.

Day 7 – Release to QA

Release to QA means more than “feature complete”. It means feature complete and tested to the best of the developers’ knowledge and ability (see below).

Day 9 – Code Freeze

By Day 9, all bugs must have been fixed, so that the QA team can spend the last day of the iteration running full regression tests (ideally automated) and ensuring that all new features still work properly in the final build

By that time, the content and scope of the next release has been firmed up by Product Owner, Tech lead, and Project Manager, and task are tentative assigned to individual engineers.

Day 10 – Show & Tell

At the end of the last day of the iteration, Eng demos all the new features to the PM, the CEO and everyone in the company we can enroll.

We then celebrate.

Tools and Tips

Sequencing Iterations

  • Depending on the complexity of the user stories, the Tech Lead (and other developers) may need to spend all of their time doing design, and may not be able to contribute any code.
  • It is sometimes more productive to write automation tests once a given feature is stable. As a consequence, the QA team may adopt a cycle where they test manually during the current iteration and then automate the tests during the next iteration (once the code is stable)
  • Exceptions to “almost shippable” are things like performance and stress testing, full browser compatibility testing, etc.
    • These tasks are then planned in the context of the overall release, and allocated to specific iterations

Release Duration

The duration of a given iteration is at the discretion of the team. It is strongly recommended that iterations last between 2 and 4 weeks.  It is also recommended that the duration of iteration be driven by its contents, in order to meet the Golden Rules. There is nothing wrong with a 12- or a 17-day iteration.

Start on Wednesday

Similarly, the starting day of the iteration is up to the team. Starting on a Wednesday offers several advantages:

  • The iteration does not start on a Monday -). Mondays are often taken up by company & team meetings.
  • Iteration finishes on a Tuesday rather than a Friday. Should the iteration slip by a day or two, it can be completed on Wednesday, or Thursday if need be. This means that the QA team is not always “stuck” having to work weekends in order to meet the deadline, nor do they have to scramble to make sure that developers are available during the weekend to fix their bugs, as would be the case if the iteration started on Monday
  • By the second weekend of the iteration, the team will have good enough visibility into its progress, and determine whether work during the weekend will be required in order to meet the schedule.


The artifacts, format and level of details through which specs are delivered to Engineering is a matter of mutual agreement between Product Owner and Engineering, recognizing that Engineering is the consumer of the specs. As such, it is Engineering  who determines the adequacy of the information provided (since Engineering cannot create a good product from incomplete specs).

Specs must be targeted for QA as well as Dev. In particular, they must be prescriptive enough so that validation tests can be derived from them. For example they may include UI mockups, flow charts, information flow diagrams, error handling behavior, platforms supported, performance and scaling requirements, as necessary.

Release to QA

While the QA team has the primary responsibility of executing the tests that will validate quality, developers own the quality of the software (since they are the ones writing the software). As a consequence, when developers release to QA, they must have tested their code to ensure that no bugs of Severity 1 or 2 will be found by QA (or customers) – unless they explicitly agree in advance with the QA team that certain categories of tests will be run by QA.

Regardless of who runs the tests, the “release to QA” milestone is only reached when enough code introspection and testing has been performed to warrant confidence that no Severity 1 or 2 bugs will be found.

Releasing to QA

Developers and QA can agree on how code will be released to QA. While the spreadsheet shows one Releate to QA  milestone, this was done for clarity of presentation. In practice, it is recommended that developers release to QA as often as possible. Again, this should be driven by mutual agreement.

Furthermore, each developer must demonstrate to his/her QA colleague that the code works properly before the code is considered to be released. This demo is accompanied by a knowledge transfer session, where the developer highlights any known limitations in the code, areas that should be tested with particular scrutiny, etc.

Estimating Scope Accurately

One of the typical debates is whether time estimates should be measured in “ideal time” (no interruptions, distractions, meetings), or “actual time” (in order to account for the typical non-project-related activities). This is a matter of personal preference – what counts is that everyone in the team uses the same system.

I prefer to use “Ideal time”: each engineer keeps 2 “books” within an iteration: the actual iteration work – scoped in “ideal time”, and a “Other Activities” book, where all non-project-related activities are accounted for. This presents the advantages of (a) using a non-varying unit to measure the scope of tasks so that you can compare across people, project, time, and (b) having a means to track “non-productive time” on your project – and thus have data on which to drive decisions (e.g. pleading management for less meetings)

Click here to get the spreadsheet

Software Specification is a Process Not a Document (2 of 2)

Engineering depends on the business team to create actionable specifications early enough before a release, to control the scope to a level commensurate to resources and time available, and to use artifacts that are relevant to the information to be conveyed.

Timing is Everything

Product Management delivering complete specifications in a timely fashion greatly improves the productivity of the Engineering team (Complete being relative the type of specifications – as we discussed in the previous blog). The more precise the information provided at the start of each phase (scoping, release or iteration), the more efficient and accurate will the resulting development work be.

This sounds boringly obvious, but I have seen the contrary scenario over and over again, where business leaders grumble that the Engineering team is not productive, while failing to provide more than a PowerPoint level specification at the start of  releases. As a consequence, developers spend the first third to half of the release working with the Product Managers to define the specs, instead of writing code – or even worse, developers start writing code without spec, and then having to do it over once the specs have been thought through.

Scoping is a 2-way Commitment

Another pitfall to avoid is “scope-creep”. While the name itself would imply that it should be avoided at all costs (who wants to be creepy?), scope creep is an all-too-common occurrence

Scope creep, on the surface, appears to stem from good intentions (we want to meet every customer request – even last minute ones), yet it is one of the most demoralizing behaviors for the Engineering team – akin to continuously pushing back the finish line, after the start of a race.

In order to avoid scope creep, we (Engineering) need to remind the business team that based on the information provided during the scoping phase, Engineering reserved a set of resources for the duration of the release, and committed to deliver the feature set in the allotted time. This in turn creates an implicit contract that the scope of the release – will be bound by the amount of resources allocated to the release. While changes are expected as we get closer to the release start, and even once the release has started, the business team can’t forget that there are only 24 hours in a day, and that no matter how cool it would be to add another 25% functionality, asking the Engineering team for such an increase in scope flies in the face of the process: If we could really do 25% more, we’d have said so the first time during the scoping phase.

In summary, once Engineering  allocates resources for a release and commits to deliverables and schedules, the business team, in turn, must commit to keep the scope of the release commensurate to the resources allocated.

Use the Right Artifacts for the Job

As we replaced Waterfall development process with Agile Software development, we also replaced Market/Product Requirement Documents with User Stories. I have to admit that I don’t get that part, or rather that I find that sometimes user stories are the best vehicle to express customer requirements, and other times, straight requirements do a better job.

For example, when a workflow needs to be implemented, nothing beats a flow chart or a state diagram to define it – we can dispense with the user story on the 3×5 card.

Write Things Down

There is no dispute that face to face discussions are the fastest way to nail down a user story. Often the expected behavior is self-evident from the software implementation itself. However, we must remember that multiple constituencies need to reach common understanding on the software’s behavior: not only the Product Champion and developers, but also, QA, support, services, etc.

Again, there is no way that more than 2 people can reach the same understanding of how a workflow should perform, or what a report is meant to compute unless it is written down, preferably in pictorial form

Technical Risk Must Be Eliminated Prior to Scoping

The business team expects estimates that are fairly accurate – say within 10%. You can see eyes roll when you present  your estimates and then add that the estimate is accurate within 30% … and it’s a fair reaction. As a consequence, time must be invested in research, design and/or prototyping, in order to reach the desired level of accuracy. Sometimes, we need to invest the time to build a prototype in order to validate a design or an architecture. While this initially may appear to be a prohibitive price to pay, a much much higher price would be paid if one embarks on a release, only to miss the deadline by a month or more, because we found out that the original design was inadequate.

Managing Perceptions

Which scenario is best?:

(A)  Promise to deliver 12 features and end up delivering 10 – OR –

(B)  Promise to deliver 9 features and end up delivering 9

In my experience, Scenario (A) is a perceived failure, while (B) will be perceived as a success.

If you agree with me, then you will want to think hard about your iteration plan, and about what features you implement in which iteration. Naturally, the later the iteration within the release, the more likely it is that its features will not be implemented (either because of schedule slips, or changes in priorities). Consequently, plan low-impact features for the last release(s); this way you’ll have to option of jettisoning them if necessary while still nailing the committed schedule. Conversely, if you high-impact features for the end, your only choices will be to disappoint — by taking them out in order to meet the schedule, or to disappoint — by forcing a schedule slip.

In conclusion, software development is a team activity – not only within the Engineering team but also with the business team: Engineering depends on the business team to create actionable specifications early enough before a release, to control the scope to a level commensurate to resources and time available, and to use artifacts that are relevant to the information to be conveyed.

Software Specification is a Process Not a Document (1 of 2)

Software specification needs to be thought of as a process, rather than a document. The three phases of the process are: (1) Release Scoping, (b) Release planning / iteration sequencing and (c) in-depth user story specifications

At each of the companies where I have worked a debate has always raged about how to document  new products specifications. As VP of Engineering, I am frequently asked to produce a template for  Requirements Documents. On the other hand, Agile does away with requirements, in favor of user stories. This, in turn, is in conflict with the business team, who wants to know six months ahead of time what they can promise to customers.

The first step towards reconciling these various perspectives  is to understand that Software Specification is a Process not a document: the value of a specification comes mostly from the process of creating it, and less so, from the final artifact. For one, the final specification rarely captures the features that were excluded, nor the business justifications behind any given feature.

The Specification Process comprises 3 different phases with different purposes and different deliverables.

  1. The first phase is Scoping: this phase typically takes place weeks before the start of the release. The output of the scoping phase is an estimate from the Engineering team that a certain bag of features can be delivered by a given date, with a given set of resources.
  2. The second phase is the Release Planning, ideally starting(shortly) before the official start of the release, where the engineering lead, with input from the product manager, creates the release plan, breaks out the release into iterations, and defines the major features to be built in each iteration
  3. The third phase involves the detailed specification of the features/user stories for each iteration.


In my world of enterprise software, the customers, and the business team, want to know months in advance what features will be available by when. Both the release date and the features are determined before the start of the project (sometimes weeks before) and must be met. This is not Agile, but it is reality – see my earlier blog “Setting Expectations about Formal Releases with the Business Team

In order to produce a reliable estimate of what will be delivered when, the Engineering team needs a complete list of features, with a degree of specificity that only needs to be good enough for the Engineering team to appreciate the degree of difficulty of each task.
For example, the spec for a user registration page on a web site could be as simple as:

  • User enters Username, Password first time, Password second time.
  • The Username must be unique
  • The 2 entries for the Password must be identical

… but it could get a lot more complicated

  • The password must meet “strength of security” criteria
  • As the user types in the password, the strength of security of the password  will be computed and displayed graphically
  • The registration server must handle up to 2,000 registrations per minute with a response time of 3 seconds or less
  • System availability must be 99.99% uptime

The two scenarios are vastly different. However, the Engineering team does not need to know a lot more than the bullets above to engage in a discussion with the business team about the scope of the project. If the application’s software stack has not already been validated for performance or reliability, the second project is going to take weeks, compared to hours for the first one. Even the little visual indicator of password strength can add days to the scope of the project (if AJAX needs to be added to the app, or if the team does not have a graphic designer readily available).

While the spec can be very short and still allow the Engineering team to provide scope estimates, one should not underestimate the time it will take to scope. For example, if system performance is significantly increased, scoping will involve design and probably prototyping.

The scoping estimates are typically done based on experience by comparing the new project to previous ones, estimating the number of functional points, etc.

Release Planning / Iteration Sequencing

Release planning, or iteration sequencing, is an overlooked and underrated activity, and yet it often signifies the difference between perceived success and failure. Agile suggests that the user stories most important to the customers should be developed first. This is indeed the primary guide in sequencing activities within a release. However, other important factors need to be considered. For example:

  • Eliminating technical risks for some of the important features
  • Confirming ease of use and usability by mocking up or prototyping key components of the user interface so that they can be shown to customers for feedback early in the release cycle, thus leaving time for modifications.
  • Integration of new libraries, tools, or partners
  • Performance validation

By going through the release planning exercise, the team drills down further in the specifications, gets a more refined appreciation for the scope of the project and thus confirms, or infirms, the original scoping estimate. If necessary, adjustments can be made before the project  starts. Early preventive action is always a good thing!
In addition, release planning is important to ensure availability of critical resources whether human, or physical.
Finally, a proper release plan will align the coding effort with the integration and testing strategy. For example, it is simpler to test API calls when you implement both sides of it, or to test a DAO, when you simultaneously code the UI front end for it.

“Intra-Release Specification”: Detailed User Stories

Once a release has started, detailed user stories must be provided to the Engineering team prior to the start of each iteration – so that the iteration can be scoped at the start of the iteration,by the developers, and the features can be implemented during the iteration.
While interactions between Product Management and developers are encouraged during the iteration, having well-thought out user stories ahead of the iteration greatly improves efficiency.

By understanding that specifying product requirements is a process, rather than a document, both business and engineering teams will work effectively, by delivering the proper level of information to each other at the right time. In the next blog, I’ll cover tricks and best practices of this process.

Agile Processes for Formal Releases

2-4 week milestones culminating in a show-and-tell where Engineering and Product Owner(s) engage in a discussion about priorities deliver a lot of the advantages of Agile methodologies, even without official buy-in from the management team

Engineering can  follow a mostly Agile methodology, even if the rest of the company does not. For example, you can still break up the development effort into 2-4 week sprints/milestones, even if the Product Owner does not indulge in reviewing priorities for each milestone. In fact, I contend that by having frequent end-of-milestone review, you will in effect elicit prioritization from the Product Management team.

2-4 Week Sprints/Milestones

Regular milestones (every 2 to 4 weeks) are essential for a several reasons, each sufficient in its own right

  • 2-4 weeks is the proper horizon for planning. While it is not impossible to make plans over longer horizons, the accuracy of these plans drops significantly when they extend beyond 4 weeks. Per Agile, the plan for each Sprint needs to be made “bottoms-up” by the developers who are working on the project
  • Commitment to the plan – Since the developers created the plan themselves, we can ask them to commit to its timely execution. Accuracy in estimating one’s work is a skill that each developer must fine-tune
  • Visibility of progress. By having an “almost shippable” release tested at the end of each sprint, we can all assess progress realistically. As the Manifesto for Agile Software Development states “Working software is the primary measure of progress.”. My measure of progress is binary – if a feature passes all the tests then it is 100% done, if not it is not done (0% complete).

With the rhythm of 2-4 week milestones, every one on the team can see the product being built, with the confidence that true progress is being made and the expectation that no nasty surprises are lurking at the tail of the project.

Show-and-tell is the culmination of the milestone, where the project team demonstrates the new features to their colleagues inside and outside of Engineering. It is critical to advertise the Show-and-Tell outside of the Engineering team, including to the CEO, VP Sales, VP Marketing, etc. The benefits of Show-and-Tell sessions are multiple:

  • Rewards for the engineers: The show-and-tell is a perfect opportunity to acknowledge the contribution of each engineer on the project and offer them public recognitions
  • Avoid surprises at the end: the last thing you want when you have toiled away for 3-6 months on a project is to hear something like “Nice work guys … but this is not what I expected!”, whether it is from your own team, or from customers. Thanks to regular show-and-tell, there are no surprises. We also give the tools to the Product Management team to share these early releases with customers, as appropriate.
  • Reassure Management: By demonstrating regular forward progress to the management team, we can relieve some of their anxiety as to whether we will be able to meet our deliverables. Equally important, when the project was too ambitious to start with, Engineering can give early warning to the management team that alternative plans need to be made, whether it is to reinforce the Engineering team, or to manage customer expectations.

Just like the milestones ensure that the Engineering team can manage its progress without surprises., the Show-and-Tell perform the same function for the business team.
Furthermore, the “Show-and-Tell” give “fair warning” to the rest of the company that the release is on its way, so that the marketing and sales machines can rev up in anticipation of the completion of the release (rather than “wait-and-see” until it’s officially released).
Engage into Discussions about Prioritization

While the business team may not embrace the Agile methodology, by holding the Show-and-Tell events, we effectively engage the Product Management team in a discussion about prioritization. Even when their perspective is “Everything is important, everything must be delivered”, by witnessing the progress, a discussion naturally ensues about whether we need to enhance, or rework, what has already been built, what features should be developed next, and the reaction of customers to the early releases.
There is no magic formula to make these discussions happen, but, in my experience, it simply happens naturally.

More than ever, in today’s fast-changing environment, Engineering must be both predictable and adaptable. Predictable so that the rest of the company can operate efficiently (e.g. by starting to market a release before it is actually complete) and adaptable in order to respond quickly to changes in the market and/or the competition. Having frequent milestones, and show-and-tell, give visibility to progress and set the stage to review priorities , and adjust them if necessary, with minimal impact on the efficiency of the Engineering team.

Cloud Computing – The Miracle Tool for Testing

Cloud Computing eliminates restrictions due to the number of servers in the QA lab, and thus allows concurrent testing by developers and QA engineers. By making it easy to test often, and to expose early releases to the outside world, Cloud Computing will improve product quality

Does this story rings familiar? You are in a planning meeting for the next release, and learn that in addition to supporting Oracle 11g, the product will also need to support Microsoft SQL Server 2008 (or DB2, or mySQL, or PostgreSQL). Once the typical brouhaha dies down about how complicated this will be, how the whole code will need to be ripped apart, and how much time this will take, the Director of QA turns to you and asks for a couple of additional servers for the QA lab, so that the software can be tested on the two databases in parallel; minimum of three servers: 1 for the database, 1 for our software, and 1 for the test fixtures. The following day, it’s the developer lead’s turn to ask for more servers: need at least 1 “populated” database against which the developers can test, plus another set up for the daily build, etc.  Makes perfect sense … Except that no budget has been allocated for these servers! Soon you find yourself with your beggar’s cup in the CEO’s office, explaining to him, and the CFO, why your team needs these extra servers when “you already have so many!!”

Rejoice! Here comes Cloud Computing to the rescue ..

Cloud Computing could not only eliminate the need to purchase servers for testing, but also actually radically improves your ability to test, and thus improve product quality.

Cloud Computing, such as Amazon EC2,  offers the ability to deploy (and un-deploy) software on demand. One pays “by the hour” of computing used, and storage and bandwidth consumed. This is perfect for testing (by developers and by QA): compute load varies greatly over the cycle of the day, as well as the cycles of the release.

First of all, every developer can now have his/her own test setup against which to test. There is no limitation of hardware, no begging, borrowing or stealing from your colleagues for unutilized servers. One can just deploy at will. Furthermore, there is no restriction on the number of servers. So if you need to test a four-server cluster, you don’t have to hunt around for free servers, you just do it.

Similarly the daily build can deploy to multiple test environments concurrently and thus accelerate the validation of the build.

Finally, the QA team can also test in multiple environments simultaneously, e.g. Oracle and SQL Server at the same time! This offers the potential benefit of being able to test a much larger number of deployment scenarios, than would be possible using one’s own hardware.

Naturally, leveraging a Cloud Computing infrastructure, requires new tools.

First and foremost, all the tests must be automated. While technology has created virtual servers, it has not yet inventing virtual test engineers J.  Secondly, one will have to build tools to automatically deploy, e.g. from the build environment, the new version of the software, and the test fixtures, as well as collect the results of the test runs.

One can be quite creative with the test management tools. For example, if a test setup encounters a high-severity bug, you could configure your test software to pause the test, deploy to a second environment and continue testing in the second environment. This allows you to go back to the first test setup to troubleshoot, and find the cause of the crash.

Another fascinating advantage is that you can deploy demo or beta systems at will  (assuming your deployment model allows it.), and let your sales team or prospective customers to “play with” the early release. By making it easier to expose early releases of the product to the outside world, Cloud Computing further improves the quality of your product.

Will you save money by testing in a Cloud Computing infrastructure?

Obviously the answer depends … on your usage, but also on factors like how much data you need to keep permanently in the cloud. For example you may need to permanently store a synthetic database of a million users (it would be too slow to upload it each time). You will also incur higher networking traffic.

In addition, you may not want to move all your tests to the cloud. For example, you may want to keep your stress-tests, or longevity tests in-house, since these will be running 24×7, and you may want the option of running them on bare-metal.

At the end of the day, to me the attraction of Cloud Computing for testing is that it will increase quality (in addition to reducing costs). It will allow each developer to have access to a test environment at will.  It will create an additional impetus for test automation. Cloud Computing will also allow the concurrent deployment of tests to an arbitrary number of computing environments, and make it easier to give early access to your customers. Net-net, this translates to more tests in the same amount of time with less effort. It’s all goodness.

“Dailies” Bolster Creativity

Design reviews do not simply allow me to have my design reviewed, but also give me the opportunity to inspire my team mates with my own ideas, and kickstart brainstorming discussions – thus fostering team creativity

By pure coincidence, I recently listened to a 2008 interview of Ed Catmull, cofounder of Pixar and President of Pixar and Disney Animation on the topic of “Pixar and Collective Creativity”, by Harvard Business School IdeaCast.

The interview centered on mechanisms to foster innovation – for which Pixar is so famous. Ed Catmull’s emphasizes the importance of communication at and across all levels, and he constantly encourages anyone and everyone to share their thoughts, critique, and suggestions.

To this effect, he encourages all the teams at Pixar to have dailies: meetings at the end of the day where each of the animators shows to the rest of the team their accomplishments of the day, whether complete or not. This is a vulnerable moment where one has to show work in progress, warts and all, to colleagues (there’s always a bit a competitive spirit at work) and possibly Ed himself, if he happens to drop by. Yet, it is also a great opportunity to not only stimulate suggestions from one’s colleagues on how to improve one’s own work, but also to give ideas, or kick-start a brainstorm about the project in general, and other people’s work.

To me, the concept of dailies translates naturally to design reviews in the software development world, as I blogged a few days ago. I don’t necessarily advocate for daily design reviews, but certainly for frequent ones; most importantly early on, before foundational decisions are made, so as to actually benefit from the team’s suggestions.

Ed Catmull highlights another set of benefits of design reviews that are potentially even more powerful to foster team creativity (rather than just individual creativity) than simply having my design double-checked: my own work and ideas can inspire my colleagues, and the very process of reviewing my work can also stimulate brainstorming discussions about new concepts and ideas. This is powerful stuff!